Example 6

In $\triangle ABC$, AB = 10 units, BC = 6 units and AC = 8 units. Show that ΔABC is right-angled and state which angle is the right-angle.

Solution

Square all of the sides:

Square
$$BC^2 = (6)^2 = 36$$

$$AC^2 = (8)^2 = 64$$

$$AB^2 = (10)^2 = 100$$

Now find out which two squares add up to the third square. Clearly 100 is the sum of 36 and 64.

and 64.

$$AB^2 = BC^2 + AC^2$$

... ΔABC is a right-angled triangle and the right-angle is at C.

EXERCISE 2

- (a) In the triangles below, show that the triangle is right-angled and state which angle is the right-angle.
 - (1) In $\triangle ABC$, AB = 24, BC = 7 and AC = 25.
 - (2) In \triangle ABC, c = 14, b = 48 and a = 50.
 - (3) In $\triangle PQR$, PQ = 24 m, QR = 70 m and PR = 74 m.
 - (4) In ΔPQR , p = 80 cm, q = 82 cm and r = 18 cm.
- (b) In $\triangle ABC$, AB = 15, BC = 9 and AC = 12and in \triangle ACD, AC = 12 and AD = 13.
 - (1) Show that $\triangle ABC$ is right-angled at \hat{C}_1 .
 - (2) Why is $\hat{C}_2 = 90^{\circ}$?
 - (3) Calculate the length of CD.

- (c) In $\triangle ABC$, AB = 74, BC = 24, AC = 70 and DE = 25.
 - (1) Show that $\triangle ABC$ is right-angled at C_1 .
 - (2) If ACDF is a square, why is Δ FDE a right-angled triangle?
 - (3) Calculate the length of EF rounded off to two decimal places.
 - (4) Calculate the perimeter of trapezium ABEF.

- (d) ABCD and EBFD are parallelograms. AE = ED.
 - (1) Show that ABCD is a rectangle.
 - (2) Why is $\hat{C} = 90^{\circ}$?
 - (3) Calculate the length of FC.
 - (4) Calculate the perimeter of ABCD.
 - (5) Calculate the area of ABCD.

